Functions of tocopherols in the cells of plants and other photosynthetic organisms.
نویسنده
چکیده
Tocopherol synthesis has only been observed in photosynthetic organisms (plants, algae and some cyanobacteria). Tocopherol is synthesized in the inner membrane of chloroplasts and distributed between chloroplast membranes, thylakoids and plastoglobules. Physiological significance of tocopherols for human and animal is well-studied, but relatively little is known about their function in plant organisms. Among the best characterized functions oftocopherols in cells is their ability to scavenge and quench reactive oxygen species and fat-soluble by-products of oxidative stress. There are the data on the participation of different mechanisms of α-tocopherol action in protecting photosystem II (PS II) from photoinhibition both by deactivation of singlet oxygen produced by PSII and by reduction of proton permeability of thylakoid membranes, leading to acidification of lumen under high light conditions and activation of violaxanthin de-epoxidase. Additional biological activity of tocopherols, independent of its antioxidant functions have been demonstrated. Basic mechanisms for these effects are connected with the modulation of signal transduction pathways by specific tocopherols and, in some instances, by transcriptional activation of gene expression.
منابع مشابه
Tocochromanol functions in plants: antioxidation and beyond.
Tocopherols and tocotrienols, collectively known as tocochromanols, are lipid-soluble molecules that belong to the group of vitamin E compounds and are essential in the human diet. Not surprisingly, most of what is known about the biological functions of tocochromanols comes from studies of mammalian systems, yet they have been shown to be synthesized only by photosynthetic organisms. The last ...
متن کاملAn update on vitamin E, tocopherol and tocotrienol-perspectives.
Vitamin E, like tocotrienols and tocopherols, is constituted of compounds essential for animal cells. Vitamin E is exclusively synthesized by photosynthetic eukaryotes and other oxygenic photosynthetic organisms such as cyanobacteria. In order to prevent lipid oxidation, the plants mainly accumulate tocochromanols in oily seeds and fruits or in young tissues undergoing active cell divisions. Fr...
متن کاملIsoprenoids: an evolutionary pool for photoprotection.
Plants have evolved several mechanisms for getting rid of excess energy in photosynthetic membranes, some of which involve isoprenoid compounds. In all photosynthetic organisms, the carotenoids beta-carotene and zeaxanthin, and tocopherols serve an important photoprotective role, either by dissipating excess excitation energy as heat or by scavenging reactive oxygen species (ROS) and suppressin...
متن کاملBacterial Proliferation Reduces Sulphur Toxicity in Stabilization Ponds: Safer Water Resources by Photosynthesis
Background: Studies suggest that sulfur may react with plants or monocellular organisms, such as fungi, to produce toxic agents. It has been theorized that sulfur enters cells and affects their respiration. This study reports on a phototroph development that leads to the diminution and/or production of sulfur and release of hydrogen sulfide from public ponds. Methods: This study was conducted ...
متن کاملWater relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application
Potassium is a major nutrient which may play an important role in many processes such as ion homeostasis in plant cells and osmotic adjustment of guard cells during stomatal opening and closing. Pathumthani 1 (PT1) rice has been reported as being a salt sensitive cultivar and has been selected as a model plant in this study to investigate the possibility of improving the osmotic potential, pigm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ukrainian biochemical journal
دوره 86 5 شماره
صفحات -
تاریخ انتشار 2014